ELSEVIER Contents lists available at ScienceDirect # **Tetrahedron Letters** journal homepage: www.elsevier.com/locate/tetlet # Catalyst-free domino-Knoevenagel-hetero-Diels-Alder reaction of terminal alkynes in water: an efficient one-step synthesis of indole-annulated thiopyranobenzopyran derivatives K. C. Majumdar *, Abu Taher, Sudipta Ponra Department of Chemistry, University of Kalyani, Kalyani 741 235, W.B, India #### ARTICLE INFO Article history: Received 5 September 2009 Revised 20 October 2009 Accepted 22 October 2009 Available online 27 October 2009 Keywords: Domino-Knoevenagel-hetero-Diels-Alder reaction Unactivated alkyne 1-Methylindoline-2-thione Water reaction #### ABSTRACT The domino-Knoevenagel-hetero-Diels-Alder reaction of O-propargylated salicylaldehyde and 1-methylindoline-2-thione in aqueous medium in the absence of Lewis acid has been described for the synthesis of hitherto unreported indole-annulated pentacyclic heterocycles containing oxygen, nitrogen and sulfur. This methodology involves only one step and easy work-up procedure to give the products in 72–80% yields. © 2009 Elsevier Ltd. All rights reserved. Indole subunits are frequently present in many biologically active natural products. ¹⁻¹¹ Some indole derivatives have been found to possess antitumor activity, some cause inflammation and vascication to human skin. ¹²⁻¹⁵ Thiopyranoindole-annulated heterocyclic compounds are important due to their biological activity. ^{16,17} Some [6,6]-fused pentacyclic indole alkaloids like aspidospermine, rauniticine, reserpine and yohimbine show extensive bioactivity. ^{4,7} This wide range of interesting activities of various indole derivatives has prompted studies in the development of an efficient methodology for the synthesis of [6,6]-fused pentacyclic derivatives in which bioactive thiopyrano indole moiety is fused with a benzopyran moiety. Literature survey reveals several reports on the synthesis of benzopyran and pyranobenzopyran moieties^{18–23} but there are a few examples on the synthesis of polycyclic pyranothiopyrans.^{24–27} In our laboratory we have synthesized coumarin- and pyrone-annulated [6,6]-fused pyranothiopyrans using sequential Claisen rearrangement²⁴ and tributyl tin hydride-mediated radical cyclization,²⁵ respectively. But we were not able to synthesize indole-annulated [6,6]-fused pyranothiopyran ring; rather [6,5]-fused pyranothiofuran²⁸ and a spiro compound²⁹ were obtained when the same methodology was applied upon thioindole moiety. More examples on the synthesis of furanothiopyran moieties are available.^{30–33} But there are drawbacks in dealing with this protocol due to harsh reaction conditions and use of stoichiometric amount of reagents.^{34,35} To avoid these discrepancies there was a need of an efficient and convenient methodology for the synthesis of indole-annulated [6,6]-fused pyranothiopyran system. In that case domino-Knoevenagel-hetero-Diels-Alder reaction is the best one and we have successfully utilized this reaction for the synthesis of indole-annulated [6,6]-fused pyranothiopyran derivatives.³⁶ The domino-Knoevenagel-hetero-Diels-Alder addition represents one of the most powerful and efficient reactions for the synthesis of heterocyclic compounds, including natural products. 37-41 Tietze extensively described the domino-Knoevenagel-hetero-Diels-Alder reaction of unsaturated aromatic and aliphatic aldehydes with several 1,3-dicarbonyl compounds for the synthesis of tetracycles with a pyran ring. 42-45 There are several examples of intramolecular domino-Knoevenagel-hetero-Diels-Alder reactions with alkenes^{26,27,46-53} but those of alkynes are rare. This may be due to low reactivity of the unactivated alkynes compared to the corresponding alkenes. Very recently Balalaie and co-workers reported^{54–58} a few hetero-Diels–Alder reactions of unactivated alkynes using Cu^I-catalyst. But to our knowledge there is no example of hetero-Diels-Alder reaction with unactivated alkynes in the absence of Cu^I-catalyst. This observation prompted us to undertake a study on hetero-Diels-Alder reaction of unactivated alkynes in the absence of a catalyst. Herein, we report the results of our investigation. The required precursors **2a–f** were prepared in high yields and purity by the reaction of substituted salicylaldehydes **1a–f** and propargyl bromide in the presence of anhydrous potassium carbonate in dry DMF at room temperature⁵⁹ (Scheme 1). ^{*} Corresponding author. Tel.: +91 033 2582 7521; fax: +91 033 2582 8282. E-mail address: kcm_ku@yahoo.co.in (K.C. Majumdar). OH CHO (i) $$a. 5,6-C_6H_4$$ (phenylene) $b. R^1 = CI, R^2 = Me$ $c. R^1 = R^2 = H$ $d. R^1 = Br, R^2 = H$ $e. R^1 = Me, R^2 = H$ $f. R^1 = t-Bu, R^2 = H$ **Scheme 1.** Reagents and condition: (i) propargyl bromide, anhydrous K₂CO₃, DMF. rt. Many reactions including Diels–Alder reaction have been carried out in aqueous medium^{60–63} as water is not only available in nature in plenty but is also safe and environment friendly. Therefore, we explored the use of water as a solvent for our proposed work. Accordingly the domino–Knoevenagel-hetero-Diels–Alder reaction of 1-methyl indoline-2-thione 3 with 2a–f was carried out in an aqueous medium under refluxing condition. We first chose 3 and 2c as model substrates to optimize the reaction conditions. The results are summarized in Table 1 (Scheme 2). We have examined the influence of Lewis acid, base and solvents in the reaction. When the reaction of 3 and 2c was carried out in water under reflux condition in the absence of a catalyst for 5 h the product **5c** was obtained in 78% yield. However, when CuI (20 mol %) was employed as a catalyst, the desired product **5c** was obtained in only 52% yield after refluxing for 5 h (entry 2). When the same reaction was carried out for 8 h the yield slightly improved to 60% (entry 3). Increasing the amount of catalyst loading (30 mol %) decreased the yield (entry 4). The affinity of d¹⁰ copper ions for soft sulfur atoms⁶⁴ may have been detrimental to the Knoevenagel reaction of 2 and 3, thereby affecting the yield of the product. When the reaction was carried out for 8 h in the presence of triethyl amine, the yield increased to 69% (entry 5). Among the various solvents (water, methanol, acetonitrile and 1,4-dioxane) used, water was found to be superior than the others when CuI (20 mol %) was used as a catalyst and triethyl amine as a base (entries 5-8). Similar results were also obtained when (NH₄)₂HPO₄ was used as a base in place of triethyl amine (entries 9-12). Among the various conditions employed, the reaction in aqueous media in the absence of a catalyst was found to give best results (Table 1). **Table 1**Effect of catalyst, solvent and base on the domino-Knoevenagel-hetero-Diels-Alder reaction of **3** and **2c** | Entry | Lewis acid
(mol %) | Solvent | Base | Time
(h) | Yield
(%) | |-------|-----------------------|--------------------|------------------|-------------|--------------| | 1 | _ | Water | _ | 5 | 78 | | 2 | CuI (20) | Water | _ | 5 | 52 | | 3 | CuI (20) | Water | _ | 8 | 60 | | 4 | CuI (30) | Water | _ | 8 | 57 | | 5 | CuI (20) | Water | NEt ₃ | 8 | 69 | | 6 | CuI (20) | MeOH | NEt ₃ | 8 | 39 | | 7 | CuI (20) | CH ₃ CN | NEt ₃ | 8 | 35 | | 8 | CuI (20) | 1,4-dioxane | NEt ₃ | 8 | 32 | | 9 | CuI (20) | water | $(NH_4)_2HPO_4$ | 8 | 64 | | 10 | CuI (20) | MeOH | $(NH_4)_2HPO_4$ | 8 | 35 | | 11 | CuI (20) | CH ₃ CN | (NH4)2HPO4 | 8 | 34 | | 12 | CuI (20) | 1,4-dioxane | $(NH_4)_2HPO_4$ | 8 | 28 | Scheme 2. Reagent and condition: (i) reflux in water. Using the optimized condition, we have examined hetero-Diels-Alder reaction of **3** and several O-propargylated aromatic aldehydes (**2a,b,d-f**). The results are listed in Table 2. To the best of our knowledge there is no report on the hetero-Diels–Alder reaction of unactivated alkynes in the absence of a catalyst. In the present instance the reactivity may perhaps be explained by considering the presence of soft sulfur atom in the diene moiety of the substrates. The sulfur atom may offer itself a reacting centre and polarizability compared to other hetero atoms. Moreover, there are empty d-orbitals in the sulfur atom having a symmetry matching that of the π -orbitals of the acetylene moiety for interaction. A probable mechanism for the domino-Knoevenagel-hetero-Diels-Alder reaction is shown in Scheme 3. Although we could not isolate the intermediates **6** we can reasonably assume that a combination of a Knoevenagel condensation between the thioindole **3** and the O-propargylated aldehydes **2a-f** and a hetero- **Table 2**Domino-Knoeveagel-hetero-Diels-Alder reaction of **3** and **2a-f**^a in aqueous medium | | 24.1 | | 4a,b, 5c-1 | |-------|-----------------------|-------------------------------|------------------------| | Entry | Aromatic aldehyde (2) | Product ^c | Yield ^b (%) | | 1 | CHO
O
2a | 4465 | 78 | | 2 | CI CHO Me 2b | Cl Me O 4b ⁶⁵ | 72 | | 3 | CHO 2c | N 5 5c65 | 78 | | 4 | Br CHO | Br 0
0
5d ⁶⁵ | 75 | | 5 | Me CHO | Me S 5e ⁶⁵ | 80 | | 6 | CHO 2f | N S 5f ⁶⁵ | 73 | - ^a All the reactions were carried out in refluxing aqueous medium for 5 h. - ^b Isolated yields. - $^{\rm c}$ The products were characterized from elemental analyses and spectroscopic data. $$\begin{array}{c|c} R^1 & CHO \\ \hline R^2 & CHO \end{array}$$ $$\begin{array}{c|c} R^1 & CHO \\ \hline R^2 & CHO \end{array}$$ $$\begin{array}{c|c} R^1 & CHO \\ \hline R^2 & CHO \end{array}$$ $$\begin{array}{c|c} R^1 & CHO \\ \hline R^2 & CHO \end{array}$$ $$\begin{array}{c|c} R^1 & CHO \\ \hline R^2 & CHO \end{array}$$ $$\begin{array}{c|c} R^1 & CHO \\ \hline R^2 & CHO \end{array}$$ $$\begin{array}{c|c} R^1 & CHO \\ \hline R^2 & CHO \end{array}$$ $$\begin{array}{c|c} R^1 & CHO \\ \hline R^2 & CHO \end{array}$$ $$\begin{array}{c|c} R^1 & CHO \\ \hline R^2 & CHO \end{array}$$ $$\begin{array}{c|c} R^1 & CHO \\ \hline R^2 & CHO \end{array}$$ $$\begin{array}{c|c} R^2 & CHO \\ \hline R^2 & CHO \end{array}$$ $$\begin{array}{c|c} R^1 & CHO \\ \hline R^2 & CHO \end{array}$$ $$\begin{array}{c|c} R^2 & CHO \\ \hline R^2 & CHO \end{array}$$ $$\begin{array}{c|c} R^2 & CHO \\ \hline R^2 & CHO \\ \hline R^2 & CHO \end{array}$$ $$\begin{array}{c|c} R^2 & CHO \\ \hline R^2 & CHO \end{array}$$ $$\begin{array}{c|c} R^2 & CHO \\ \hline R^2 & CHO \end{array}$$ $$\begin{array}{c|c} R^2 & CHO \\ \hline R^2 & CHO \end{array}$$ $$\begin{array}{c|c} R^2 & CHO \\ \hline R^2 & CHO \\ \hline R^2 & CHO \end{array}$$ $$\begin{array}{c|c} R^2 & CHO \\ \hline \\$$ Scheme 3. Probable mechanism of domino-Knoeveagel-hetero-Diels-Alder reaction. Diels-Alder reaction may produce the indole-annulated polyheterocycles 4. However, we could isolate only products 4a and 4b and no other corresponding products 4c-f were isolated. Instead products **5c-f** were obtained. The fact that substituents in orthoposition of the aldehyde group led to unconjugated products (4a,b) clearly indicates peri-hindrance, which is substantially diminished in case of an sp³-hybridized angular carbon. Substrates without a substituent in the ortho-position with respect to the aldehyde group afforded conjugated products 5c-f involving a 1,3-prototropic shift of the intermediates **4c-f**. In conclusion, we have demonstrated a simple and efficient strategy for the synthesis of indole-annulated [6,6]-fused thiopyranobenzopyrans in 72-80% yields by domino-Knoevenagel-hetero-Diels-Alder reaction of unactivated terminal acetylene in the absence of any Lewis acid. The condition applied is mild, and water is used as a reaction medium which is environment friendly. A remarkable feature of this one-pot reaction is that C-C and C-S bond formation occurs in the absence of any catalyst and base. ### Acknowledgements We thank CSIR (New Delhi) and DST (New Delhi) for financial assistance. Two of us (A.T. and S.P.) are grateful to CSIR (New Delhi) for a Senior and a Junior Research Fellowship. ## **References and notes** - Saxton, J. E. Indoles; Wiley-Interscience: New York, 1983. - Sundberg, R. J. The Chemistry of Indoles; Academic Press: New York, 1970. - Carle, J. S.; Christophersen, C. J. Org. Chem. 1980, 45, 1586-1589. - Sakabe, N.; Sendo, Y.; Iijima, I.; Ban, Y. Tetrahedron Lett 1969, 30, 2527-2530. - Ohmoto, T.; Koike, K. Chem. Pharm. Bull. 1984, 32, 170-173. - Shimizu, M.; Ishikawa, M.; Komoda, Y.; Nkajima, T.; Yamaguchi, K.; Yoneda, N. Chem. Pharm. Bull. 1984, 32, 463-474. - Yamanaka, E.; One, M.; Kasamatsu, S.; Aimi, N.; Sakai, S. Chem. Pharm. Bull. **1984**, 32, 818-821. - Taniguchi, M.; Anjiki, T.; Nakagawa, M.; Hino, T. Chem. Pharm. Bull. 1984, 32, 2544-2554 - Hashimoto, Y.; Shudo, K.; Okamoto, T. Chem. Pharm. Bull. 1984, 32, 4300-4308. - 10. Nakashima, Y.; Kawashima, Y.; Amanuma, F.; Sota, K.; Tanaka, A.; Kameyama, T. Chem. Pharm. Bull. 1984, 32, 4271–4280. - Kamijo, S.; Yamamoto, Y. J. Org. Chem. 2003, 68, 4764-4771. - Guillonneare, C.; Pierre, A.; Charton, Y.; Guilbaud, N.; Kraus-Berthier, I.; Leonce, S.; Michel, A.; Bisagni, I.; Atassi, G. J. Med. Chem. 1999, 42, 2191-2203. - Haider, N.; Sotelo, E. Chem. Pharm. Bull. 2002, 50, 1479-1483. Sakai, S.; Aimi, N.; Yamaguchi, K.; Hitotsuyonagi, Y.; Watanabe, C.; Yokose, K.; Koyama, Y.; Shudo, K.; Itai, A. Chem. Pharm. Bull. 1984, 32, 354-357. - Endo, Y.; Shudo, K.; Faruhata, K.; Ogura, H.; Sakai, S.; Aimi, N.; Hitotsuyonagi, Y.; Koyama, Y. Chem. Pharm. Bull. **1984**, 32, 358–361. - Takada, S.; Makisumi, Y. Chem. Pharm. Bull. 1984, 32, 872-876. - Takada, S.; Ishizuka, N.; Sasatani, T.; Makisumi, Y.; Jyoyama, H.; Hatakeyama, H.; Asanuma, F.; Hirose, K. Chem. Pharm. Bull. 1984, 32, 877-886. - Boger, D. L.; Weinreb, S. M. In Hetero Diels-Alder Methodology in Organic Synthesis; Academic Press: New York, 1987; p 225. - 19. Majumdar, K. C.; Basu, P. K.; Mukhopadhyay, P. P.; Sarkar, S.; Ghosh, S. K.; Biswas, P. Tetrahedron 2003, 59, 2151-2157 - 20 Majumdar, K. C.; Mukhopadhyay, P. P. Synthesis 2003, 97-100. - Ingal, A. H.. In Comprehensive Heterocyclic Chemistry; Boulton, A. S., McKillop, A., Eds.; Pergamon Press: Oxford, 1984; Vol. 3, p 773. - 22 Talley, J. J. J. Org. Chem. 1985, 50, 1695-1699. - Inamoto, N. Heteroat. Chem. 2001, 12, 183-194. - Majumdar, K. C.; Kundu, U. K.; Ghosh, S. K. Org. Lett. 2002, 4, 2629-2631. - Majumdar, K. C.; Muhuri, S. Synthesis 2006, 2725-2730. - 26. Jayashankaran, J.; Manian, R. D. R. S.; Raghunathan, R. Tetrahedron Lett. 2006, 47. 2265-2270. - 27. Matiychuk, V. S.; Lesyk, R. B.; Obushak, M. D.; Gzella, A.; Atamanyuk, D. V.; Ostapiuk, Y. V.; Kryshchyshyn, A. P. Tetrahedron Lett. 2008, 49, 4648-4651. - 28 Majumdar, K. C.; Alam, S. J. Chem. Res. 2006, 281-285. - Majumdar, K. C.; Alam, S. Org. Lett. 2006, 8, 4059-4062 - 30. Majumdar, K. C.; Chattopadhyay, S. K. Can. J. Chem. 2006, 84, 469-475. - Majumdar, K. C.; Samanta, S. K. Synth. Commun. 2006, 36, 1299-1306. - Majumdar, K. C.; Bandopadhyay, A.; Biswas, A. Tetrahedron 2003, 59, 5289-5293. - 33. Majumdar, K. C.; Kundu, U. K.; Ghosh, S. Perkin Trans. 1 2002, 2139- - For a detailed report on the toxicity of tin reagents, see: Occupational Exposure to Organotin Compounds, US Department of Health, Education and Welfare: Washington, November, 1976. - Boyer, I. J. Toxicology 1989, 55, 253-298. - Majumdar, K. C.; Taher, A.; Ray, K. Tetrahedron Lett. 2009, 50, 3889-3891. - Baudelle, R.; Melnyk, P.; Deprez, B.; Tartar, A. Tetrahedron 1998, 54, 4125-4140. - Yamanaka, M.; Nishida, A.; Nakagana, M. Org. Lett. 2000, 2, 159-161. - Deligny, M.; Carreaux, F.; Toupet, L.; Carboni, B. Adv. Synth. Catal. 2003, 345, - Yadav, J. S.; Reddy, B. V. S.; Sadashiv, K.; Padmavani, B. Adv. Synth. Catal. 2004, 346, 607-610. - Berkessel, A.; Erturk, E.; Laporte, C. Adv. Synth. Catal. 2006, 348, 223-228. - Tietze, L. F.; Ott, C.; Gerke, K.; Buback, M. Angew. Chem., Int. Ed. Engl. 1993, 32, 1485-1486 - Tietze, L. F. Chem. Rev. 1996, 96, 115-136. - Tietze, L. F.; Rackelmann, N. Pure Appl. Chem. 2004, 76, 1967-1983. - Tietze, L. F.; Brasche, G.; Gericke, K. Domino Reactions in Organic Synthesis; Wiley-VCH, 2006. - Manikandan, S.; Shanmugasundaram, M.; Raghunathan, R. Tetrahedron 2002, 58, 8957-8962. - Yadav, J. S.; Reddy, B. V. S.; Narsimhaswamy, D.; Lakshmi, P. N.; Narsimulu, K.; Srinivasulu, G.; Kunwar, A. C. Tetrahedron Lett. 2004, 45, 3493-3497. - Jimenez-Alonso, S.; Estevez-Braun, A.; Ravelo, A. G.; Zarate, R.; Lopez, M. Tetrahedron **2007**, 63, 3066–3074. - Ramesh, E.; Raghunathan, R. Tetrahedron Lett. 2008, 49, 1812-1817. - Lee, Y. R.; Xia, L. Tetrahedron Lett. 2008, 49, 3283-3287. - limenez-Alonso, S.: Chavez, H.: Estevez-Braun, A.: Ravelo, A. G.: Feresin, G.: Tapia, A. Tetrahedron **2008**, 64, 8938–8942. - Lee, Y. R.; Kim, Y. M.; Kim, S. H. Tetrahedron 2009, 65, 101-108. - Desimoni, G.; Faita, G.; Righetti, P.; Tacconi, G. Tetrahedron 1996, 52, 12009-12018 - Khoshkholgh, M. J.; Balalaie, S.; Bijanzadeh, H. R.; Gross, J. H. Synlett 2009, 55- - Khoshkholgh, M. J.; Balalaie, S.; Bijanzadeh, H. R.; Gross, J. H. ARKIVOC 2009, ix, 114-121. - Khoshkholgh, M. J.; Balalaie, S.; Bijanzadeh, H. R.; Rominger, F.; Gross, J. H. Tetrahedron Lett. 2008, 49, 6965-6968. - Khoshkholgh, M. J.; Balalaie, S.; Gleiter, R.; Rominger, F. Tetrahedron Lett. 2008, 49. 10924-10929 - Khoshkholgh, M. J.; Lotfi, M.; Balalaie, S.; Rominger, F. Tetrahedron 2009, 65, 4228-4234 - Bashiardes, G.; Safir, I.; Barbot, F.; Laduranty, J. Tetrahedron Lett. 2004, 45, 1567-1570 - Grieco, P. A. Organic Synthesis in Water; Blacky Academic & Professional Publishers: London. 1998. - Lindstrom, U. M. Chem. Rev. 2002, 102, 2751-2772. - Li, C.-J. Chem. Rev. 2005, 105, 3095-3165. - Li, C. J.; Chan, T. H. Comprehensive Organic Reactions in Aqueous Media; Wiley and Sons: New York, 2007 - Dai, J.; Munakata, M.; Wu, L.-P.; Sowa, T. K.; Suenaga, Y. Inorg. Chim. Acta 1997, 258, 65-69, - 1-methylindoline-2-thione (**3**) (1 equiv) A mixture propargyloxynaphthaldehyde (2a) (1 equiv) was refluxed in water for 5 h. After completion of the reaction as monitored by TLC the reaction mixture was cooled and diluted with water (50 mL). This was extracted with ethyl acetate (3 \times 25 mL). The combined organic extract was washed with brine and dried over anhydrous Na₂SO₄. The solvent was distilled off. The crude product was purified by column chromatography over silica gel (60-120 mesh) using petroleum ether-ethyl acetate mixture (98:2) as eluent to give compound 4a. Yield: 78%, colourless solid; mp 186–188 °C; IR(neat): v_{max} = 749, 1456, 1613, 2920 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): $\delta_{\rm H}$ = 3.74 (s, 3H), 4.65 (d, J = 12.6 Hz, 1H), 4.85 (d, J = 12.9 Hz, 1H), 5.12 (s, 1H), 5.34 (d, J = 8.1 Hz, 1H), 6.36 (t, J = 7.2 Hz, 1H), 6.64 (s, 1H), 6.87 (t, J = 7.5 Hz, 1H), 7.11 (d, J = 7.8 Hz, 1H), 7.25-7.40 (m, 3H), 7.83 (d, J = 8.4 Hz, 2H), 7.90 (d, J = 7.5 Hz, 1H) ppm. MS: m/z = 355(M⁺). Anal. Calcd for C₂₃H₁₇NOS: C, 77.72; H, 4.82; N, 3.94. Found: C, 77.89; H, 4.77; N, 3.85.Compound **4b**: Yield: 72%, colourless solid; mp 166–168 °C; IR(neat): $\nu_{\rm max}$ = 751, 1461, 1659, 2924 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): $\delta_{\rm H}$ = 2.34 (s, 3H), 3.72 (s, 3H), 4.49 (d, J = 12.3 Hz, 1H), 4.59 (s,1H), 4.73 (d, J = 12.6 Hz, 1H), 6.20 (d, J = 8.1 Hz, 1H), 6.80 (t, J = 7.5 Hz, 1H), 6.86 (d, J = 9.0 Hz, 1H), 7.03 (t, J = 7.5 Hz, 1H), 7.18 (d, J = 8.1 Hz, 1H), 7.34 (d, J = 8.7 Hz, 2H) ppm. MS: m/z = 353 (M¹). Anal. Calcd for $C_{20}H_{16}\text{CINOS}$: C, 67.88; H, 4.56; N, 3.96. Found: C, 67.73; H, 4.62; N, 3.89.Compound **5c**: Yield: 78%, colourless solid; mp 180–182 °C; IR(neat): ν_{max} = 751, 1457, 1601, 2917 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ_{H} = 3.47 (s, 2H), 3.78 (s, 3H), 4.80 (s, 2H), 6.96 – 6.98 (m, 2H), 7.07 (t, J = 7.5 Hz, 1H), 7.17 –7.21 (m, 2H), 7.31 (d, J = 8.1 Hz, 1H), 7.38 (d, J = 8.0 Hz, 1H), 7.45 (dd, J = 1.5, 7.6 Hz, 1H) ppm. ¹³C NMR (100 MHz): 30.2, 36.1, 72.8, 102.7, 108.3, 109.9, 116.7, 118.0, 119.9, 120.7, 121.4, 125.7, 126.5, 127.3, 127.8, 128.0 129.0, 137.8, 153.7 ppm. MS: 327.93 (M+Na)⁵. Anal. Calcd for $C_{19}H_{15}$ NOS: C, 74.72; H, 4.95; N, 4.59. Found: C, 74.98; H, 4.93; N, 4.66.Compound **5d**: Yield: 75%, colourless solid; mp 140–142 °C; IR(neat): ν_{max} = 743, 1474, 1619, 2918 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ_{H} = 3.47 (s, 2H), 3.79 (s, 3H), 4.81 (s, 2H), 6.85 (d, J = 8.6 Hz, 1H), 7.14 (t, J = 7.2 Hz, 1H), 7.20 (t, J = 7.4 Hz, 1H), 7.29–7.39 (m, 3H), 7.58 (s, 1H) ppm. MS: m/z = 383, 385 (M*). Anal. Calcd for $C_{19}H_{14}BrNOS$: C, 59.38; H, 3.67; N, 3.64. Found: C, 59.61; H, 3.63; N, 3.59. Compound **5e**: Yield: 80%, colourless solid; mp 108–110 °C; IR(neat): ν_{max} = 747, 1464, 1611, 2918 cm $^{-1}$; 1 H NMR (CDCl₃, 500 MHz): $\delta_{\rm H}$ = 2.23 (s, 3H), 3.47 (s, 2H), 3.78 (s, 3H), 4.76 (s, 2H), 6.87 (d, J = 8.1 Hz, 1H), 6.98 (dd, J = 1.4, 8.1 Hz, 1H), 7.06 (t, J = 7.9 Hz, 1H), 7.17 (t, J = 8.0 Hz, 1H), 7.28 (d, J = 1.4 Hz, 1H), 7.32 (d, J = 8.1 Hz, 1H), 7.39 (d, J = 8.0 Hz, 1H) ppm. MS: m/z = 319 (M*). Anal. Calcd for $C_{20}H_{17}NOS$: C, 75.20; H, 5.36; N, 4.39. Found: C, 75.01; H, 5.43; N, 4.31. Compound **5f**: Yield: 73%, colourless solid; mp 178–180 °C; IR(neat): ν_{max} = 743, 1474, 1619, 2918 cm $^{-1}$; 1 H NMR (CDCl₃, 500 MHz): $\delta_{\rm H}$ = 1.25 (s, 9H), 3.48 (s, 2H), 3.79 (s, 3H), 4.78 (s, 2H), 6.90 (d, J = 8.3 Hz, 1H), 7.03 (t, J = 7.2 Hz, 1H), 7.16 (t, J = 7.5 Hz, 1H), 7.20 (dd, J = 2.2, 8.4 Hz, 1H), 7.32 (d, J = 8.1 Hz, 1H), 7.40 (d, J = 8.0 Hz, 1H), 7.50 (d, J = 2.1 Hz, 1H) ppm. MS: m/z = 361 (M*). Anal. Calcd for $C_{23}H_{23}NOS$: C, 76.42; H, 6.41; N, 3.87. Found: C, 76.54; H, 6.44; N, 3.76.